Let \( y=f(x)=\frac{x+2}{x-1} \), then :
\[
\begin{array}{ll}
f(1)=...
Let \( y=f(x)=\frac{x+2}{x-1} \), then :
\[
\begin{array}{ll}
f(1)=3 & f(2)=5 \\
x=f(y) & f \text { is a rational function. }
\end{array}
\]
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/
Other Videos By PW Solutions
2023-02-25 | Differentiate the following w.r.t. \( x \) :
\[
\frac{1}{\log \cos ... |
2023-02-25 | Differentiate the following w.r.t. \( x \) :
\[
\frac{e^{x}}{x}
\]
... |
2023-02-25 | Give an example of matrices A, B and C such that
\[
\mathrm{AB}=\ma... |
2023-02-25 | If \( (f(x))^{2} \times f\left(\frac{1-x}{1+x}\right)=64 x, x \neq ... |
2023-02-25 | If \( (f(x))^{2} \times f\left(\frac{1-x}{1+x}\right)=64 x, x \neq ... |
2023-02-25 | Show with the help of an example that \( \mathrm{AB}=\mathrm{O} \),... |
2023-02-25 | Evaluate the following :
\[
\left[\begin{array}{lll}
x & y & z
\end... |
2023-02-25 | A function \( f: \mathbf{Z} \rightarrow \mathbf{Z} \) is defined as... |
2023-02-25 | Evaluate the following :
\[
\left[\begin{array}{l}
4 \\
5
\end{arra... |
2023-02-25 | Let \( f(x)=e^{\cos ^{-1}\left(\sin \left(x+\frac{\pi}{3}\right)\ri... |
2023-02-25 | Let \( y=f(x)=\frac{x+2}{x-1} \), then :
\[
\begin{array}{ll}
f(1)=... |
2023-02-25 | Let \( f:\left[\frac{-\pi}{3}, \frac{2 \pi}{3}\right] \rightarrow[0... |
2023-02-25 | \[
\tan ^{-1}\left[\tan \frac{5 \pi}{6}\right] \neq \frac{5 \pi}{6}... |
2023-02-25 | Find the equation of the parabola with vertex \( (0,0) \)
\( \mathr... |
2023-02-25 | Let \( \mathrm{A}=\{0,1,2,3\} \) and define a relation \( \mathrm{R... |
2023-02-25 | Is \( \tan ^{-1}\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)=\frac{1... |
2023-02-25 | Show that: \( \quad \sin ^{-1}\left[\sin \frac{3 \pi}{4}\right] \ne... |
2023-02-25 | Let \( \mathrm{Y}=\left\{n^{2}, n \in \mathbf{N}\right\} \subset \m... |
2023-02-25 | Assertion (A): Three states of matter are the result of balance between intermolecular forces an... |
2023-02-25 | Let ' \( * \) ' be the binary operation defined on \( \mathbf{R} \)... |
2023-02-25 | Prove that \( \lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}=n \).
\... |