Let \( f_{1}:(0, \infty) \rightarrow R \) and \( f_{2}:(0, \infty) \rightarrow R \) be defined b...

Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=3K5k2OnJ7vk



Duration: 6:52
4 views
0


Let \( f_{1}:(0, \infty) \rightarrow R \) and \( f_{2}:(0, \infty) \rightarrow R \) be defined by
\[
f_{1}(x)=\int_{0}^{x} \prod_{j=1}^{21}(t-j)^{j} d t, x0
\]
and \( f_{2}(x)=98(x-1)^{50}-600(x-1)^{49}+2450, x0 \), where for any positive integer \( n \) and real numbers \( a_{1}, a_{2}, \ldots a_{n}, \prod_{i=1}^{n} a_{i} \) denotes the product of \( a_{1}, a_{2}, \ldots, a_{n} \). Let \( m_{i} \) and \( n_{i} \), respectively, denote the number of points of local minima and the number of points of local maxima of function \( f_{i}, i=1,2 \), in the interval \( (0, \infty) \)
The value of \( 2 m_{1}+3 n_{1}+m_{1} n_{1} \) is
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-09Area enclosed between the curves \( |y|=1-x^{2} \) and \( x^{2}+y^{2} \) \( =1 \) is: (a) \( \fr...
2023-06-09Let \( y=g(x) \) be the inverse of a bijective mapping \( f: R \rightarrow \) \( R, f(x)=3 x^{3}...
2023-06-09The area of the closed figure bounded by \( x=-1, y=0 \), \( y=x^{2}+x+1 \) and the tangent to t...
2023-06-09Let \( f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow R \) be a continuous function su...
2023-06-09Find the area in the first quadrant bounded by \( y=x^{2}, x=0 \), \( y=1 \) and \( y=4 \). (a) ...
2023-06-09Let \( f \) be a twice differentiable function on \( R \). If \( f^{\prime}(0)=4 \) and \( f(x)+...
2023-06-09The area enclosed by the graph of \( \frac{|x|}{5}+\frac{|y|}{3}=1 \), is (a) 30 (b) 90 (c) 15
2023-06-09Evaluate \( \int_{0}^{\pi} \frac{x \sin (2 x) \sin \left(\frac{\pi}{2} \cos x\right)}{2 x-\pi} d...
2023-06-09The area of region \( \left\{(x, y) ; x^{2}+y^{2} \leq 1 \leq x+y\right\} \) is: (a) \( \frac{\p...
2023-06-09The area enclosed by curves \( y=\cos x, y=1+\sin 2 x \) and \( x=\frac{3 \pi}{2} \) as \( x \) ...
2023-06-09Let \( f_{1}:(0, \infty) \rightarrow R \) and \( f_{2}:(0, \infty) \rightarrow R \) be defined b...
2023-06-09Let \( f_{1}:(0, \infty) \rightarrow R \) and \( f_{2}:(0, \infty) \rightarrow R \) be defined b...
2023-06-09Let \( f_{1}:(0, \infty) \rightarrow R \) and \( f_{2}:(0, \infty) \rightarrow R \) be defined b...
2023-06-09The area of the triangle fromed by the tangent of slope -1 to the hyperbola \( x y=a^{2} \) and ...
2023-06-09If the area above the \( x \)-axis bounded by the curves \( y=2^{k x} \) and \( x=0 \) and \( x=...
2023-06-09Let \( \operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha \) and \( \...
2023-06-09Evaluate \( \int_{0}^{1} \log [\sqrt{(1-x)}+\sqrt{(1+x)}] d x \).
2023-06-09Let \( g i:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R, i=1,2 \) and \( f:\left[\f...
2023-06-09Prove that \( \int_{a}^{b} \frac{d x}{\sqrt{x}}=2(\sqrt{b}-\sqrt{a}) \), where \( a, b0 \). usin...
2023-06-09Let \( f \) be a differentiable function satisfying \( f(x)=\frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3...
2023-06-09Let \( f(x)=\min \{[x-1],[x-2], \ldots,[x-10]\} \) where \( [t] \) denotes the greatest integer ...