Let from a point \( A(h, k), 3 \) distinct normals can be drawn to ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=MapCoxuWN7g
Let from a point \( A(h, k), 3 \) distinct normals can be drawn to parabola \( y^{2}=4 a x \)
\( \mathrm{P} \) and the feet of these normals on parabola be points \( P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right) \)
W and \( R\left(a t_{3}^{2}, 2 a t_{3}\right) \)
The controid of \( \triangle P A Q \) has co-ordinates :
(a) \( \left(\frac{2}{3}(h-2 a), 0\right) \)
(b) \( \left(\frac{2}{3}(h-3 a), 0\right) \)
(c) \( \left(\frac{2}{3}(2 h-a), 0\right) \)
(d) \( \left(\frac{2}{3}(h-a), 0\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw