Let \( f(x) \) be a differentiable function, satisfying \( f(0)=2 \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=c_HsUEbBVck
Let \( f(x) \) be a differentiable function, satisfying \( f(0)=2 \), \( \mathrm{f}^{\prime}(0)=3 \) and \( \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \)
P Area enclosed by \( y=f(x), y=f^{1}(x), x+y=2 \) and
W \( x+y=-\frac{1}{2} \ln 5 \) is
(a) \( 8+\frac{1}{8}\left((\mathrm{n} 5)^{2}\right. \)
(b) \( 8-2 \sqrt{5}+\frac{1}{8}(\ln 5)^{2} \)
(c) \( 2 \sqrt{5}-\frac{1}{8}\left((n 5)^{2}\right. \)
(d) \( 8+2 \sqrt{5}-\frac{1}{8}\left((\operatorname{nn} 5)^{2}\right. \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw