Let \( \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots . . \mathrm{a}...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=XP5D1g6mJ2I
Let \( \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots . . \mathrm{a}_{n} \), be real numbers such that \( \sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}+\ldots \ldots+\sqrt{a_{n}-(n-1)}=\frac{1}{2}\left(a_{1}+a_{2}+\ldots \ldots+a_{n}\right)-\frac{n(n-3)}{4} \)
\( \mathrm{P} \) then find the value of \( \sum_{i=1}^{100} a_{i} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw