Let \( \mathrm{C}_{1} \) and \( \mathrm{C}_{2} \) are concentric circles of radius 1 and \( 8 / 3 \) respectively having centre at \( (3,0) \) on the
\( \mathrm{P} \) argand plane. If the complex number z satisfies the inequality, \( \log _{1 / 3}\left(\frac{|\mathrm{z}-3|^{2}+2}{11|\mathrm{z}-3|-2}\right)1 \) then :
(A) \( \mathrm{z} \) lies outside \( \mathrm{C}_{1} \) but inside \( \mathrm{C}_{2} \)
(B) \( \mathrm{z} \) lies inside of both \( \mathrm{C}_{1} \) and \( \mathrm{C}_{2} \)
(C) z lies outside both of \( \mathrm{C}_{1} \) and \( \mathrm{C}_{2} \)
(D) none of these
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/