Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1 \forall...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=-2bvfCjDNdc
Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1 \forall \mathrm{x} \in \mathrm{R} \). Let \( \mathrm{f}:(-\infty, \mathrm{a}] \rightarrow[\mathrm{b}, \infty) \), where 'a' is the largest real number for which \( \mathrm{f}(\mathrm{x}) \) is bijective.
\( \mathrm{P} \)
The value of \( (\mathrm{a}+\mathrm{b}) \) is equal to
(A) \( -2 \)
(B) \( -1 \)
(C) 0
(D) 1
\( \mathrm{W} \)
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/