Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1 \forall...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=QG1I_6Hak74
Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1 \forall \mathrm{x} \in \mathrm{R} \). Let \( \mathrm{f}:(-\infty, \mathrm{a}] \rightarrow[\mathrm{b}, \infty) \), where 'a' is the largest real number for which \( \mathrm{f}(\mathrm{x}) \) is bijective.
\( \mathrm{P} \)
Let \( \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \), then range of values of \( \mathrm{k} \) for which equation \( \mathrm{f}(|\mathrm{x}|)=\mathrm{k} \) has 4 distinct real roots is
(A) \( (-2,-1) \)
(B) \( (-2,0) \)
(C) \( (-1,0) \)
(D) \( (0,1) \)
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/