Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}+2 \) and ...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=bnw0zDvCxn8
Let \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}+2 \) and \( \mathrm{g}(\mathrm{x}) \) is the inverse of it. Then the area bounded by \( \mathrm{g}(\mathrm{x}) \), the \( \mathrm{x} \)-axis and the ordinate at
P \( x=-2 \) and \( x=6 \) is
W.
(a) \( \frac{1}{4} \)
(b) \( \frac{4}{3} \)
(c) \( \frac{9}{2} \)
(d) \( \frac{7}{3} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw