Let \( P_{n}=a^{P_{n-1}}-1, \forall n=2,3, \ldots \ldots \) and Let \( P_{1}=a^{x}-1 \) where \(...
Let \( P_{n}=a^{P_{n-1}}-1, \forall n=2,3, \ldots \ldots \) and Let \( P_{1}=a^{x}-1 \) where \( a \in R^{+} \). Evaluate \( \lim _{x \rightarrow 0} \frac{P_{n}}{x} \).
(a) \( \left[\ln \frac{1}{a}\right]^{n} \)
(b) \( (\ln a)^{n} \)
(c) \( [\ln (e a)-1]^{n} \)
(d) \( (\ln \mathrm{a})^{1 / n} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-08 | \( \lim _{x \rightarrow 0} \frac{x\left[e^{\left(\sqrt{1+x^{4}+x^{8}}-1\right) / x}-1\right]}{\l... |
2023-06-08 | \( \mathrm{P}=\lim _{n \rightarrow \infty}\left\{\lim _{x \rightarrow 0} \frac{\ln (1+n x)[\tan ... |
2023-06-08 | \( \lim _{x \rightarrow \infty}((x+1)(x+2)(x+3))^{\frac{1}{3}}-x \) |
2023-06-08 | \( \alpha, \beta \) are roots of equation \( a x^{2}+b x+c=0 \) where \( 1\alpha\beta \) if \( \... |
2023-06-08 | Find the value of \( \lim _{x \rightarrow 0} \frac{1-\sqrt[3]{\cos 3 x} \sqrt[5]{\cos 5 x}}{x^{2... |
2023-06-08 | \( \lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x-\sin x}\right)^{\sin x} \) is |
2023-06-08 | Find the value of \( \lim _{x \rightarrow \infty} \sqrt[3]{x^{3}+3 x^{2}}-\sqrt{x^{2}-2 x} \) |
2023-06-08 | If \( f(x)=\left\{\begin{array}{cc}\sin x, & x \neq n \pi, n=0, \pm 1, \pm 2, \ldots \ldots \\ 2... |
2023-06-08 | Which of the following limits does not exist?
(a) \( \lim _{x \rightarrow \infty} \operatorname{... |
2023-06-08 | \( f(x)=\left\{\begin{array}{l}x+\frac{1}{2}, x0 \\ 2 x+\frac{1}{3}, x \geq 0\end{array}\right. ... |
2023-06-08 | Let \( P_{n}=a^{P_{n-1}}-1, \forall n=2,3, \ldots \ldots \) and Let \( P_{1}=a^{x}-1 \) where \(... |
2023-06-08 | \[
\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+x}-\sqrt{\frac{4 x^{3}}{x+2}}\right)
\]
(a) \... |
2023-06-08 | Refer to the figure, the value of \( \lim _{x \rightarrow 0^{+}} \frac{f(-x) x^{2}}{\left\{\frac... |
2023-06-08 | \( \lim _{x \rightarrow 0} \frac{\sin x-x^{2}-\{x\} \cdot\{-x\}}{x \cos x-x^{2}-\{x\} \cdot\{-x\... |
2023-06-08 | The value of \( \lim _{x \rightarrow 1} \frac{\sqrt[3]{x}+\sqrt{x}+x \sqrt{x}-3}{x^{3}-1} \) is
... |
2023-06-08 | \( \lim _{x \rightarrow 0}\left\{(1+x)^{\frac{2}{x}}\right\} \) (where \( \{\cdot\} \) denotes t... |
2023-06-08 | \( \lim _{x \rightarrow \infty} \frac{\cos ^{-1}\left(x^{-a} \log _{a} x\right)}{\sec ^{-1}\left... |
2023-06-08 | If \( f(x)=\lim _{n \rightarrow \infty} \frac{(1-\cos (1-\cos x))(x+1)^{n}+\lambda \sin \left(n-... |
2023-06-08 | Let \( S_{n}=1+2+3+\ldots+n \) and \( P_{n}=\prod_{r=2}^{n} \frac{S_{r}}{S_{r}-1} \), where \( n... |
2023-06-08 | \[
\lim _{x \rightarrow \infty}\left(\frac{e^{\pi / x}+e^{-\pi / x}}{\cos (\pi / x)}\right)^{x^{... |
2023-06-08 | \[
\lim _{x \rightarrow \infty} x^{2} \sin \left(\ln \sqrt{\cos \frac{\pi}{x}}\right)
\]
(a) \( ... |