Let \( P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=W8Pol5C7frU
Let \( P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right] \), where \( \alpha \in \mathbb{R} \). Suppose
\( Q=\left[q_{i j}\right] \) is a matrix such that \( P Q=k l \), where \( k \in \mathbb{R} \),
\( k \neq 0 \) and \( I \) is the identity matrix of order 3 . If
\( -q_{23}=-\frac{k}{8} \) and \( \operatorname{det}(Q)=\frac{k^{2}}{2} \), then
(A) \( \alpha=0, k=8 \)
(B) \( 4 \alpha-k+8=0 \)
(C) \( \operatorname{det}(P \operatorname{adj}(Q))=2^{9} \)
(D) \( \operatorname{det}(Q \operatorname{adj}(P))=2^{13} \)
P
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw