Let two points \( P \) and \( Q \) lie on the hyperbola \( \frac{x^...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=JCXLP-H6CaI
Let two points \( P \) and \( Q \) lie on the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \),
\( \mathrm{P} \) whose center \( C \) be such that \( C P \) is perpendicular to \( C Q \),
W \( ab \). Then the value of \( \frac{1}{C P^{2}}+\frac{1}{C Q^{2}} \) is
(1) \( \frac{b^{2}-a^{2}}{2 a b} \)
(2) \( \frac{1}{a^{2}}+\frac{1}{b^{2}} \)
(3) \( \frac{2 a b}{b^{2}-a^{2}} \)
(4) \( \frac{1}{a^{2}}-\frac{1}{b^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw