Let \( u=\int_{0}^{\infty} \frac{d x}{x^{4}+7 x^{2}+1} \) and \( v=...
Let \( u=\int_{0}^{\infty} \frac{d x}{x^{4}+7 x^{2}+1} \) and \( v=\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+7 x^{2}+1} \).
P
The value of \( u \) is
(1) \( \pi / 3 \)
(2) \( \pi / 6 \)
(3) \( \pi / 12 \)
(4) \( \pi / 9 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-03-21 | Match the following lists:
\begin{tabular}{|l|l|}
\hline \multicolu... |
2023-03-21 | If [.] denotes the greatest integer function, then match the follow... |
2023-03-21 | If \( U_{n}=\int_{0}^{\pi} \frac{1-\cos n x}{1-\cos x} d x \), wher... |
2023-03-21 | If \( U_{n}=\int_{0}^{\pi} \frac{1-\cos n x}{1-\cos x} d x \), wher... |
2023-03-21 | If \( f(x)=\int_{0}^{1} \frac{d t}{1+|x-t|}, x \in R \)
\( \mathrm{... |
2023-03-21 | If \( f(x)=\int_{0}^{\pi} \frac{t \sin t d t}{\sqrt{1+\tan ^{2} x \... |
2023-03-21 | Let \( \mathrm{f} \) be a differentiable function satisfying \( \in... |
2023-03-21 | Let \( \mathrm{f} \) be a differentiable function satisfying
\[
\in... |
2023-03-21 | Let \( f(x) \) be a non-constant twice differentiable function defi... |
2023-03-21 | If \( f(x)=\int_{0}^{1} \frac{d t}{1+|x-t|}, x \in R \)
P
The value... |
2023-03-21 | Let \( u=\int_{0}^{\infty} \frac{d x}{x^{4}+7 x^{2}+1} \) and \( v=... |
2023-03-21 | Let \( u=\int_{0}^{\infty} \frac{d x}{x^{4}+7 x^{2}+1} \) and \( v=... |
2023-03-21 | The range of the function \( f(x)=\int_{-1}^{1} \frac{\sin x d t}{\... |
2023-03-21 | \( \int_{0}^{x}|\sin t| d t \), where \( x \in(2 n \pi,(2 n+1) \pi)... |
2023-03-21 | \( f:[0,1] \rightarrow R \) be a non increasing function, then for ... |
2023-03-21 | If \( \int_{0}^{1} e^{x^{2}}(x-\alpha) d x=0 \), then
\( \mathrm{P}... |
2023-03-21 | If \( \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2} \), then... |
2023-03-21 | \( \int_{-1}^{1} \frac{e^{-1 / x}}{x^{2}\left(1+e^{-2 / x}\right)} ... |
2023-03-21 | Match the following lists:
P
\begin{tabular}{|l|l|}
\hline \multico... |
2023-03-21 | If \( S_{n}=\left[\frac{1}{1+\sqrt{n}}+\frac{1}{2+\sqrt{2 n}}+\cdot... |
2023-03-21 | Match the following lists:
\begin{tabular}{|l|l|}
\hline \multicolu... |