Machine Learning Work Shop-Session 3 - Pedro Domingos - Learning Tractable but Expressive Models

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=4aeYvkacfp4



Duration: 25:30
991 views
16


Inference is the hardest part of learning. Learning most powerful models requires repeated intractable inference, and approximate inference often interacts badly with parameter optimization. At inference time, an intractable accurate model can effectively become an inaccurate model due to approximate inference. All these problems would be avoided if we learned only tractable models, but standard tractable model classes - like thin junction trees and mixture models - are insufficiently expressive for most applications. However, in recent years a series of surprisingly expressive tractable model classes have been developed, including arithmetic circuits, feature trees, sum-product networks, and tractable Markov logic. I will give an overview of these representations, algorithms for learning them, and their startling successes in challenging applications.




Other Videos By Microsoft Research


2016-08-11From the Information Extraction Pipeline to Global Models, and Back
2016-08-11Some Algorithmic Problems in High Dimensions
2016-08-11Machine Learning Course - Lecture 2
2016-08-11Panel: Open Data for Open Science - Data Interoperability
2016-08-11Cloud Computing - What Do Researchers Want? - A Panel Discussion
2016-08-11Machine Learning Work Shop - Recovery of Simultaneously Structured Models by Convex Optimization
2016-08-11Machine Learning Work Shop- A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
2016-08-11Machine Learning Work Shop - Combining Machine and Human Intelligence in Crowdsourcing
2016-08-11Graph Drawing 2012 Day 3 - Session 4
2016-08-11Machine Learning Work Shop-Session 4 - Hariharan Narayanan - Testing the Manifold Hypothesis
2016-08-11Machine Learning Work Shop-Session 3 - Pedro Domingos - Learning Tractable but Expressive Models
2016-08-11Machine Learning Work Shop - Graphical Event Models for Temporal Event Streams
2016-08-11Machine Learning Work Shop - Online Learning Against Adaptive Adversaries
2016-08-11Machine Learning Work Shop - Counterfactual Measurements and Learning Systems
2016-08-11Machine Learning Work Shop - Why Submodularity is Important to Machine Learning
2016-08-11Machine Learning Work Shop - Bayesian Nonparametrics for Complex Dynamical Phenomena
2016-08-11Machine Learning Work Shop - GraphLab: Large-scale Machine Learning on Natural Graphs
2016-08-11Deep and segmental convolutional neural networks for speech recognition
2016-08-11Active Publications
2016-08-11Data Science Curricula at the University of Washington eScience Institute
2016-08-11Machine Assisted Thought



Tags:
microsoft research