Machine Learning Work Shop - Combining Machine and Human Intelligence in Crowdsourcing

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=eYMxYLdyhTE



Duration: 26:49
1,775 views
23


Machine Learning Work Shop-Session 4 - Ece Kamar - 'Combining Machine and Human Intelligence in Crowdsourcing' Crowdsourcing has been increasingly popular for gaining programmatic access to human intelligence for solving tasks that computers cannot easily perform alone. To date, computers have been employed largely in the role of platforms for recruiting and reimbursing human workers; the burden of managing crowdsourcing tasks and ensuring quality has relied on manual designs and controls. In this talk, I will show how machine learning and decision-theoretic reasoning can be used in harmony to leverage the complementary strengths of humans and computational agents to solve crowdsourcing tasks efficiently. This methodology, which we refer to as CrowdSynth, includes predictive models that perform inference about workers and tasks, and efficient algorithms for making effective decisions. We demonstrate the way CrowdSynth methodology can help to maximize the efficiency of a large-scale crowdsourcing operation with experiments on a large-scale citizen-science project called Galaxy Zoo.




Other Videos By Microsoft Research


2016-08-11Towards ad hoc interactions with robots
2016-08-11Dynamically Enforcing Knowledge-based Security Policies
2016-08-11Real Applications of Non-Real Numbers
2016-08-11From the Information Extraction Pipeline to Global Models, and Back
2016-08-11Some Algorithmic Problems in High Dimensions
2016-08-11Machine Learning Course - Lecture 2
2016-08-11Panel: Open Data for Open Science - Data Interoperability
2016-08-11Cloud Computing - What Do Researchers Want? - A Panel Discussion
2016-08-11Machine Learning Work Shop - Recovery of Simultaneously Structured Models by Convex Optimization
2016-08-11Machine Learning Work Shop- A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
2016-08-11Machine Learning Work Shop - Combining Machine and Human Intelligence in Crowdsourcing
2016-08-11Graph Drawing 2012 Day 3 - Session 4
2016-08-11Machine Learning Work Shop-Session 4 - Hariharan Narayanan - Testing the Manifold Hypothesis
2016-08-11Machine Learning Work Shop-Session 3 - Pedro Domingos - Learning Tractable but Expressive Models
2016-08-11Machine Learning Work Shop - Graphical Event Models for Temporal Event Streams
2016-08-11Machine Learning Work Shop - Online Learning Against Adaptive Adversaries
2016-08-11Machine Learning Work Shop - Counterfactual Measurements and Learning Systems
2016-08-11Machine Learning Work Shop - Why Submodularity is Important to Machine Learning
2016-08-11Machine Learning Work Shop - Bayesian Nonparametrics for Complex Dynamical Phenomena
2016-08-11Machine Learning Work Shop - GraphLab: Large-scale Machine Learning on Natural Graphs
2016-08-11Deep and segmental convolutional neural networks for speech recognition



Tags:
microsoft research