Machine Learning Work Shop - Counterfactual Measurements and Learning Systems

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=isGAY9ELqyo



Duration: 20:48
1,020 views
7


Machine Learning Work Shop-Session 1 - Leon Bottou - 'Counterfactual Measurements and Learning Systems' This work shows how to leverage causal inference to understand the behavior of com- plex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select changes that improve both the short-term and long-term performance of such systems. This work is illustrated by experiments carried out on the ad placement system associated with the Bing search engine.




Other Videos By Microsoft Research


2016-08-11Panel: Open Data for Open Science - Data Interoperability
2016-08-11Cloud Computing - What Do Researchers Want? - A Panel Discussion
2016-08-11Machine Learning Work Shop - Recovery of Simultaneously Structured Models by Convex Optimization
2016-08-11Machine Learning Work Shop- A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
2016-08-11Machine Learning Work Shop - Combining Machine and Human Intelligence in Crowdsourcing
2016-08-11Graph Drawing 2012 Day 3 - Session 4
2016-08-11Machine Learning Work Shop-Session 4 - Hariharan Narayanan - Testing the Manifold Hypothesis
2016-08-11Machine Learning Work Shop-Session 3 - Pedro Domingos - Learning Tractable but Expressive Models
2016-08-11Machine Learning Work Shop - Graphical Event Models for Temporal Event Streams
2016-08-11Machine Learning Work Shop - Online Learning Against Adaptive Adversaries
2016-08-11Machine Learning Work Shop - Counterfactual Measurements and Learning Systems
2016-08-11Machine Learning Work Shop - Why Submodularity is Important to Machine Learning
2016-08-11Machine Learning Work Shop - Bayesian Nonparametrics for Complex Dynamical Phenomena
2016-08-11Machine Learning Work Shop - GraphLab: Large-scale Machine Learning on Natural Graphs
2016-08-11Deep and segmental convolutional neural networks for speech recognition
2016-08-11Active Publications
2016-08-11Data Science Curricula at the University of Washington eScience Institute
2016-08-11Machine Assisted Thought
2016-08-11Keynote: Biology: A Move to Dry Labs
2016-08-11Graph Drawing 2012 Day 2 - Session 1
2016-08-11Machine Learning Course - Lecture 1



Tags:
microsoft research