Match the integrals of \( f(x) \) if
\begin{tabular}{|c|c|c|c|}
\hline & Column I & & Column II ....
Match the integrals of \( f(x) \) if
\( \mathrm{P} \)
\begin{tabular}{|c|c|c|c|}
\hline & Column I & & Column II \\
\hline (A) & \( f(x)=\frac{1}{\left(x^{2}+1\right) \sqrt{x^{2}+2}} \) & \( (\mathrm{P}) \) & \( \frac{x^{5}}{5\left(1-x^{4}\right)^{5 / 2}}+C \) \\
\hline (B) & \begin{tabular}{l}
\( f(x) \) \\
\( =\frac{1}{(x+2) \sqrt{x^{2}+6 x+7}} \)
\end{tabular} & (Q) & \( \sin ^{-1}\left(\frac{x+1}{(x+2) \sqrt{2}}+C\right) \) \\
\hline (C) & \begin{tabular}{l}
\( f(x) \) \\
\( =\frac{x^{4}+x^{8}}{\left(1-x^{4}\right)^{7 / 2}} \)
\end{tabular} & \( (\mathbf{R}) \) & \begin{tabular}{l}
\( -2 \sqrt{1-x}+\cos ^{-1} \sqrt{x} \) \\
\( +\sqrt{x} \sqrt{1-x}+C \)
\end{tabular} \\
\hline (D) & \( f(x)=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} \) & \( (\mathbf{S}) \) & \( -\tan ^{1} \sqrt{1+2 / x^{2}}+C \) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
(1) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) \\
(2) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{S} \) & \( \mathrm{R} \) \\
(3) & \( \mathrm{S} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) & \( \mathrm{R} \) \\
(4) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{S} \) & \( \mathrm{R} \)
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-21 | Question
If volume of parallelepiped whose there coterminous edges are \( \vec{u}=\hat{i}+\hat{j.... |
2024-01-21 | Question
Let \( \vec{\alpha}=(\lambda-2) \vec{a}+\vec{b} \) and \( \vec{\beta}=(4 \lambda-2) \ve.... |
2024-01-21 | Question
Let \( \vec{a}=3 \hat{i}+\hat{j} \) and \( \vec{b}=\hat{i}+2 \hat{j}+\hat{k} \). Let \(.... |
2024-01-21 | Question
Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be three unit vectors, out of which
vector.... |
2024-01-21 | Question
Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be three-unit vectors such that
\( \vec{a}.... |
2024-01-21 | Question
Two adjacent sides of a parallelogram \( A B C D \) are
given by \( \overrightarrow{A B.... |
2024-01-21 | Question
The sum of the distinct real values of \( \mu \), for which
the vectors \( \mu \hat{i}+.... |
2024-01-21 | Question
Let \( P(3,2,6) \) be a point in space and \( Q \) be a point
on the line \( \vec{r}=(\.... |
2024-01-21 | Question
If \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) are unit vectors such that
\( (\ve.... |
2024-01-21 | The antiderivative of
\begin{tabular}{|l|l|l|l|}
\hline & Column I & & \multicolumn{1}{|c|}{ Col.... |
2024-01-21 | Match the integrals of \( f(x) \) if
\begin{tabular}{|c|c|c|c|}
\hline & Column I & & Column II .... |
2024-01-21 | If \( \int e^{2 x}(\cos x+7 \sin x) d x=e^{2 x} g(x)+C \),
where \( C \) is a constant of integr.... |
2024-01-21 | Question
Let two non-collinear unit vectors \( \hat{a} \) and \( \hat{b} \) form
an acute angle..... |
2024-01-21 | If
\( \int \frac{\sin 2 x}{\sin 3 x \sin 5 x} d x=\frac{1}{p} \log _{e}|\sin 3 x|-\frac{1}{q} \l.... |
2024-01-21 | Question
Let \( \vec{a}, \vec{b}, \vec{c} \) be unit vectors such that \( \vec{a}+\vec{b}+\vec{c.... |
2024-01-21 | Question
A particle \( P \) starts from the point \( z_{0}=1+2 i \), where \( i=\sqrt{-1} \). It.... |
2024-01-21 | Question
The edges of a parallelopiped are of unit length and
are parallel to non-coplanar unit .... |
2024-01-21 | To evaluate
\( \int \frac{a \sin x+b \cos x}{c \sin x+d \cos x} d x \) where \( c^{2}+d^{2} \neq.... |
2024-01-21 | Question
The number of distinct real values of \( \lambda \), for which
the vectors \( -\lambda^.... |
2024-01-21 | Match the entries of Column I with those of Column II.
\begin{tabular}{|l|l|l|l|}
\hline & Colum.... |
2024-01-21 | If \( \int \frac{x^{2}}{1+x^{6}} \operatorname{Tan}^{-1}\left(x^{3}\right) d x=\frac{1}{k}\left[.... |