Match the items of Column-I with those in Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicol....
Match the items of Column-I with those in Column II.
P
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
\( \int \frac{1+\log _{e} x}{1+x \log _{e} x} d x \) \\
equals
\end{tabular} & (p) & \( \frac{1}{6} \log _{e}\left|\frac{x-1}{x+5}\right| \) \\
\hline (B) & \( \int \frac{d x}{x^{2}+4 x-5} \) is & (q) & \( \log _{e}\left|1+\log _{e} x\right|+c \) \\
\hline (C) & \begin{tabular}{l}
\( \int[1+2 \tan x \) \\
\( (\tan x+\sec x)]^{1 / 2} d x \) \\
is
\end{tabular} & (r) & \( \log _{e}|\sec x(\sec x+\tan x)| \) \\
\hline (D) & \begin{tabular}{l}
\( \int \frac{d x}{x\left(1+\log _{e} x\right)} \) \\
equals
\end{tabular} & (s) & \( \log _{e}\left|1+x \log _{e} x\right|+c \) \\
\hline
\end{tabular}
(1) (A) \( \rightarrow(\mathrm{r}),(\mathrm{B}) \rightarrow(\mathrm{s}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow(\mathrm{p}) \)
(2) (A) \( \rightarrow \) (p), (B) \( \rightarrow \) (q), (C) \( \rightarrow \) (s), (D) \( \rightarrow(\mathrm{r}) \)
(3) (A) \( \rightarrow(\mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{p}) ;(\mathrm{C}) \rightarrow(\mathrm{r}) ;(\mathrm{D}) \rightarrow(\mathrm{q}) \)
(4) (A) \( \rightarrow(\mathrm{p}),(\mathrm{B}) \rightarrow(\mathrm{q}),(\mathrm{C}) \rightarrow(\mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{r}) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-22 | The area bounded by the parabola \( y=x^{2}+1 \) and
the straight line \( x+y=3 \), is.... |
2024-01-22 | The area bounded by the curves \( y=\sin x \) and \( y= \)
\( \cos x \) between two consecutive .... |
2024-01-22 | The area bounded by the curve \( x y^{2}=4(2-x) \) and
\( y \)-axis, is.... |
2024-01-22 | If \( \int \frac{\cot ^{3} x \cos x}{\left(\sin ^{5} x+\cos ^{5} x\right)^{3 / 5}} d x=\frac{-1}.... |
2024-01-22 | The area bounded by the curve \( y=(x-1)(x-2) \)
\( (x-3) \) lying between the ordinates \( x=1 .... |
2024-01-22 | \( \int \frac{4 e^{x}+6 e^{-x}}{9 e^{x}-4 e^{-x}} d x \) equals.... |
2024-01-22 | The area bounded by the curve \( y=\sin ^{-1} x \) and the
lines \( x=0,|y|=\frac{\pi}{2} \), is.... |
2024-01-22 | The area enclosed by the curves \( x^{2}=y, y=x+2 \),
and \( x \)-axis, is.... |
2024-01-22 | The area of bounded by \( x=2 y-y^{2} \) and the \( y \)-axis
is.... |
2024-01-22 | The area enclosed by the graph of \( y=\log _{\mathrm{e}}(x+1) \),
\( y \) - axis and the line \.... |
2024-01-22 | Match the items of Column-I with those in Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicol.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | \( \int \frac{1-\cos x}{\cos x(1+\cos x)} d x \) is equal to.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | If \( \int \frac{x^{4}}{\sqrt{4+x^{5}}} d x=\frac{p}{q} \sqrt{4+x^{5}}+c \), then \( p+q=\ldots .... |
2024-01-22 | \( \int \frac{\operatorname{Sin}^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\operatorname{Sin}^{-1} \sqr.... |
2024-01-22 | \( \int \frac{x}{\left(x^{2}-3 x+2\right) \sqrt{x^{2}-4 x+3}} d x \) is equal to.... |
2024-01-22 | Let \( f(x)=x^{3}+a x^{2}+b x+c \) where \( a, b, c \) are real
numbers. If \( f(x) \) has local.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | \( \int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x= \).... |
2024-01-22 | \( \int \frac{d x}{\left(x^{6}+1\right)^{2}}-\frac{5}{6} \int \frac{d x}{x^{6}+1} \) is equal to.... |