\( \int \frac{1-\cos x}{\cos x(1+\cos x)} d x \) is equal to....
\( \int \frac{1-\cos x}{\cos x(1+\cos x)} d x \) is equal to
\( \mathrm{P} \)
(1) \( \log _{e}|\sec x+\tan x|-2 \tan \frac{x}{2}+c \)
(2) \( \log _{e}\left|\tan \frac{x}{2}\right|-2(\sec x+\tan x)+c \)
(3) \( -2 \tan \frac{x}{2}+\log _{e}\left|\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right|+c \)
(4) \( 2 \tan \frac{x}{2}+\log _{e}\left|\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right|+c \)
.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-22 | The area bounded by the curve \( x y^{2}=4(2-x) \) and
\( y \)-axis, is.... |
2024-01-22 | If \( \int \frac{\cot ^{3} x \cos x}{\left(\sin ^{5} x+\cos ^{5} x\right)^{3 / 5}} d x=\frac{-1}.... |
2024-01-22 | The area bounded by the curve \( y=(x-1)(x-2) \)
\( (x-3) \) lying between the ordinates \( x=1 .... |
2024-01-22 | \( \int \frac{4 e^{x}+6 e^{-x}}{9 e^{x}-4 e^{-x}} d x \) equals.... |
2024-01-22 | The area bounded by the curve \( y=\sin ^{-1} x \) and the
lines \( x=0,|y|=\frac{\pi}{2} \), is.... |
2024-01-22 | The area enclosed by the curves \( x^{2}=y, y=x+2 \),
and \( x \)-axis, is.... |
2024-01-22 | The area of bounded by \( x=2 y-y^{2} \) and the \( y \)-axis
is.... |
2024-01-22 | The area enclosed by the graph of \( y=\log _{\mathrm{e}}(x+1) \),
\( y \) - axis and the line \.... |
2024-01-22 | Match the items of Column-I with those in Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicol.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | \( \int \frac{1-\cos x}{\cos x(1+\cos x)} d x \) is equal to.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | If \( \int \frac{x^{4}}{\sqrt{4+x^{5}}} d x=\frac{p}{q} \sqrt{4+x^{5}}+c \), then \( p+q=\ldots .... |
2024-01-22 | \( \int \frac{\operatorname{Sin}^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\operatorname{Sin}^{-1} \sqr.... |
2024-01-22 | \( \int \frac{x}{\left(x^{2}-3 x+2\right) \sqrt{x^{2}-4 x+3}} d x \) is equal to.... |
2024-01-22 | Let \( f(x)=x^{3}+a x^{2}+b x+c \) where \( a, b, c \) are real
numbers. If \( f(x) \) has local.... |
2024-01-22 | \( \int f(g(x)) g^{\prime}(x) d x=\int f(t) d t \) where \( t=g(x) \). This
rule is called subst.... |
2024-01-22 | \( \int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x= \).... |
2024-01-22 | \( \int \frac{d x}{\left(x^{6}+1\right)^{2}}-\frac{5}{6} \int \frac{d x}{x^{6}+1} \) is equal to.... |
2024-01-22 | If \( f(x) \) is a quadratic expression such that \( f(0)=f(1) \)
\( =3 f(2)=-3 \), then \( \int.... |
2024-01-22 | \( \int \frac{e^{x \sqrt{2}}\left(1-x^{2}\right)}{(1-x \sqrt{2}) \sqrt{1-2 x^{2}}} d x \) is equ.... |