Match the items of Column I with those of Column II.
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{3}{|c|}{ Column \( -\mathbf{I} \)} & \multicolumn{2}{c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
The point from which \\
perpendicular tangents can be \\
drawn to the parabola \( y^{2}=8 x \) \\
is
\end{tabular} & \( \mathbf{P} \) & \( (-2,1) \) \\
\hline \( \mathbf{B} \) & \begin{tabular}{l}
The line \( x+y+3=0 \) touches \\
the parabola \( y^{2}=12 x \) at the \\
point
\end{tabular} & \( \mathbf{Q} \) & \( (4,6) \) \\
\hline \( \mathbf{C} \) & \begin{tabular}{l}
\( 4 x+3 y-34=0 \) is normal to \\
the parabola \( y^{2}=9 x \) at the \\
point
\end{tabular} & \( \mathbf{R} \) & \( (3,-6) \) \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
The line parallel to \( 4 y-x+3 \) \\
\( =0 \) touches the parabola \( y^{2}= \) \\
\( 7 x \) at the point
\end{tabular} & \( \mathbf{S} \) & \( (28,14) \) \\
\hline
\end{tabular}
(1) (A-S); (B-P); (C-R); (D-Q)
(2) (A-P); (B-R); (C-Q); (D-S)
(3) \( (\mathrm{A}-\mathrm{Q}) ;(\mathrm{B}-\mathrm{R}) ;(\mathrm{C}-\mathrm{P}) ;(\mathrm{D}-\mathrm{S}) \)
(4) \( (\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{Q}) ;(\mathrm{D}-\mathrm{S}) \)