Match the items of Column I with those of Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{|c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
If point \( \mathrm{P} \) is on the circle \( x^{2} \) \\
\( +y^{2}=5 \), then the equation of \\
chord of contact with respect \\
to the parabola \( y^{2}=4 x \) is \( y=2 \) \\
\( (x-2) \). The coordinates of \( \mathrm{P} \) \\
are
\end{tabular} & \( \mathbf{P} \) & \( (9,-6) \) \\
\hline B & \begin{tabular}{l}
Tangents are drawn from the \\
point \( (2,3) \) to a parabola \( y^{2}= \) \\
\( 4 x \). Then the points of contact \\
are
\end{tabular} & \( \mathbf{Q} \) & \( (1,2) \) \\
\hline C & \begin{tabular}{l}
The common chord of the \\
circle \( x^{2}+y^{2}=5 \) and the \\
parabola \( 6 y=5 x^{2}+7 x \) passes \\
through
\end{tabular} & \( \mathbf{R} \) & \( (-2,1) \) \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
Two points \( P(4,-4) \) and \( Q \) \\
are on the parabola \( y^{2}=4 x \) \\
such that the area of \( \triangle P O Q \) \\
\( (Q \) is the vertex is 6 sq. unit. \\
Then, the coordinates of Q are
\end{tabular} & \( \mathbf{S} \) & \( (4,4) \) \\
\hline
\end{tabular}
(1) \( (\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{Q}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{P}) \)
(2) (A-S); (B-S); (C-R); (D-P)
(3) (A-R); (B-Q, S); (C-Q, R); (D-P, Q)
(4) \( (\mathrm{A}-\mathrm{P}) ;(\mathrm{B}-\mathrm{R}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{P}) \)