Match the items of Column I with those of Column II. \begin{tabular}{|l|l|l|l|} \hline \multicol....

Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=JSe383liJyw



Duration: 11:45
0 views
0


Match the items of Column I with those of Column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{|c|}{ Column - II } \\
\hline \( \mathbf{A} \) & \begin{tabular}{l}
If point \( \mathrm{P} \) is on the circle \( x^{2} \) \\
\( +y^{2}=5 \), then the equation of \\
chord of contact with respect \\
to the parabola \( y^{2}=4 x \) is \( y=2 \) \\
\( (x-2) \). The coordinates of \( \mathrm{P} \) \\
are
\end{tabular} & \( \mathbf{P} \) & \( (9,-6) \) \\
\hline B & \begin{tabular}{l}
Tangents are drawn from the \\
point \( (2,3) \) to a parabola \( y^{2}= \) \\
\( 4 x \). Then the points of contact \\
are
\end{tabular} & \( \mathbf{Q} \) & \( (1,2) \) \\
\hline C & \begin{tabular}{l}
The common chord of the \\
circle \( x^{2}+y^{2}=5 \) and the \\
parabola \( 6 y=5 x^{2}+7 x \) passes \\
through
\end{tabular} & \( \mathbf{R} \) & \( (-2,1) \) \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
Two points \( P(4,-4) \) and \( Q \) \\
are on the parabola \( y^{2}=4 x \) \\
such that the area of \( \triangle P O Q \) \\
\( (Q \) is the vertex is 6 sq. unit. \\
Then, the coordinates of Q are
\end{tabular} & \( \mathbf{S} \) & \( (4,4) \) \\
\hline
\end{tabular}
(1) \( (\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{Q}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{P}) \)
(2) (A-S); (B-S); (C-R); (D-P)
(3) (A-R); (B-Q, S); (C-Q, R); (D-P, Q)
(4) \( (\mathrm{A}-\mathrm{P}) ;(\mathrm{B}-\mathrm{R}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{P}) \)


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-23An ellipse is inscribed in a rectangle and the angle between the diagonals of the rectangle is \....
2024-01-23If the eccentricity of the ellipse \( \frac{x^{2}}{a^{2}+1}+\frac{y^{2}}{a^{2}+2}=1 \) is \( \fr....
2024-01-23The locus of the midpoints of a focal chord of the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b....
2024-01-23The eccentricity of the locus of point \( (3 h+2, k) \), where \( (h, k) \) lies on the circle \....
2024-01-23Match the items of Column I with those of Column II. \begin{tabular}{|l|l|c|c|} \hline \multicol....
2024-01-23There are exactly two points on the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) whos....
2024-01-23If the equation \( (5 x-1)^{2}+(5 y-1)^{2}=\left(\lambda^{2}-2 \lambda+1\right) \) \( (3 x+4 y-1....
2024-01-23If \( (3,4) \) and \( (5,12) \) are the foci of an ellipse passing through the origin then the e....
2024-01-23The equation of the ellipse whose foci are \( ( \pm 3,0) \) and eccentricity \( \frac{1}{3} \) i....
2024-01-23\( P Q \) is a double ordinate of the parabola \( y^{2}=4 x \). If the normal at \( P \) meets t....
2024-01-23Match the items of Column I with those of Column II. \begin{tabular}{|l|l|l|l|} \hline \multicol....
2024-01-23The focus of the parabola \( x^{2}-\lambda y+3=0 \) is \( (0,2) \). Match the items of Column I ....
2024-01-23The number of points at which the parabola \( y^{2}=4 \mathrm{x} \) and the circle \( x^{2}+y^{2....
2024-01-23The equation of the ellipse whose foci are \( ( \pm 3,0) \) and eccentricity \( \frac{1}{3} \) i....
2024-01-23Match the items of Column I with those of Column II. \begin{tabular}{|l|l|c|l|} \hline \multicol....
2024-01-23The equation of the common tangents to the parabolas \( x^{2}=y \) and \( (x-2)^{2}=-y \) are- (....
2024-01-23If \( x+y=a \) is normal to the parabola \( y^{2}=12 x \), then the value of \( a \) is equal to....
2024-01-23Consider the circle \( x^{2}+y^{2}=9 \) and the parabola \( y^{2}=8 x \). They intersect at \( P....
2024-01-23Slope of the common tangent of the curves \( y^{2}=8 x \) and \( x y=-1 \) is....
2024-01-23\( P\left(2 t^{2}, 4 t\right) \) is a point on the parabola \( y^{2}=8 x \) and \( Q(h, k) \) is....
2024-01-23Consider the circle \( x^{2}+y^{2}=9 \) and the parabola \( y^{2}=8 x \). They intersect at \( P....