The focus of the parabola \( x^{2}-\lambda y+3=0 \) is \( (0,2) \). Match the items of Column I with those of Column II.
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline \( \mathbf{A} \) & The value of \( \lambda \) is & \( \mathbf{P} \) & 2 \\
\hline \( \mathbf{B} \) & \begin{tabular}{l}
Latus rectum of the parabola \\
is
\end{tabular} & \( \mathbf{Q} \) & 1 \\
\hline \( \mathbf{C} \) & \begin{tabular}{l}
If \( k \) is the ordinate of the \\
vertex, then \( 2 \mathrm{k} \) is equal to
\end{tabular} & \( \mathbf{R} \) & 4 \\
\hline \( \mathbf{D} \) & \begin{tabular}{l}
The directrix equation is \( y= \) \\
\( b \), where \( 3 b \) is equal to
\end{tabular} & \( \mathbf{S} \) & 3 \\
\hline
\end{tabular}
(1) (A-R); (B-S); (C-Q); (D-P)
(2) (A-P); (B-Q); (C-S); (D-R)
(3) \( \quad(\mathrm{A}-\mathrm{R}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{Q}) \)
(4) \( (\mathrm{A}-\mathrm{P}) ;(\mathrm{B}-\mathrm{P}) ;(\mathrm{C}-\mathrm{S}) ;(\mathrm{D}-\mathrm{S}) \)