Match the statements/expressions in Column-I with the values given in Column II: \begin{tabular}....

Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=BeUmv0GoWwg



Duration: 5:51
0 views
0


Match the statements/expressions in Column-I with the values given in Column II:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
Root(s) of the expression \\
\( 2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2 \)
\end{tabular} & \( (\mathrm{P}) \) & \( \frac{\pi}{6} \) \\
\hline (B) & \begin{tabular}{l}
Points of discontinuity of \\
the function \\
\( f(x)=\left[\frac{6 x}{\pi}\right] \cos \left[\frac{3 x}{\pi}\right] \) \\
where \( [y] \) denotes the \\
largest integer less than or \\
equal to \( y \)
\end{tabular} & (Q) & \( \frac{\pi}{4} \) \\
\hline (C) & \begin{tabular}{l}
Volume of the \\
parallelepiped with its \\
edges represented by the \\
vectors \( \hat{i}+\hat{j}+\hat{i} 2 \hat{j} \) and \\
\( \hat{i}+\hat{j}+\pi \hat{k} \)
\end{tabular} & (R) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline (D) & \begin{tabular}{l}
Angle between vectors \( \vec{a} \) \\
and \( \hat{b} \) where \( \vec{a}, \hat{b} \) and \( \vec{c} \) \\
are unit vectors satisfying \\
\( \vec{a}+\vec{b}+\sqrt{3} \vec{c}=\overrightarrow{0} \)
\end{tabular} & (S) & \( \frac{\pi}{2} \) \\
\hline & & (T) & \( \pi \) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & R, S & P, R, S, T & T & P \\
(2) & Q, S & P, R, S, T & Q & P \\
(3) & Q, S & P, R, S, T & T & R \\
(4) & P, S & Q, R, S, T & T & R
\end{tabular}


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-22\( I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, \quad n=0,1,2, \l....
2024-01-22\( f(x)=\int_{0}^{x} \cos ^{4} t d t \), then \( f(x+\pi) \) equals....
2024-01-22If \( I_{1}=\int_{-4}^{-5} e^{(x+5)^{2}} d x \) and \( I_{2}=3 \int_{1 / 3}^{2 / 3} e^{9[x-(2 / ....
2024-01-22If \( \int_{0}^{x} e^{z x} \cdot e^{-z^{2}} d z=f(x) \int_{0}^{x} e^{-z^{2} / 4} d z \) then \( ....
2024-01-22\[ \int_{0}^{\sin ^{2} x} \operatorname{Sin}^{-1} \sqrt{t} d t+\int_{0}^{\cos ^{2} x} \operatorn....
2024-01-22\( \int_{0}^{\log _{e} 5} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x= \) (1) \( 3+\pi \) (2) \( 3-....
2024-01-22Solution of the equation \( \int_{\log _{e} 2}^{x} \frac{d t}{\sqrt{e^{t}-1}}=\frac{\pi}{6} \) i....
2024-01-22\( \int_{-\pi / 3}^{-\pi / 6} \frac{d x}{1+\tan ^{4} x}= \)....
2024-01-22Match the Column-I with Column-II \begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ Column....
2024-01-22\( \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x= \)....
2024-01-22Match the statements/expressions in Column-I with the values given in Column II: \begin{tabular}....
2024-01-22\( \int_{0}^{\pi} x f(\sin x) d x=k \int_{0}^{\pi / 2} f(\sin x) d x \), the value of \( k \) is....
2024-01-22\( \int_{0}^{10} e^{x-[x]} d x([\cdot] \) denotes integral part \( ) \) is equal to....
2024-01-22If a vector \( \vec{r} \) satisfies the equation \( \vec{r} \times(\hat{i}+2 \hat{j}+\hat{k})=\h....
2024-01-22What is the distance between the planes \( x-2 y+z-1=0 \) and \( -3 x+6 y-3 z+2=0 \) ?....
2024-01-22If a line makes angles \( \alpha, \beta \) and \( \gamma \) with the coordinate axes, then \( \c....
2024-01-22\( \vec{a} \) and \( \vec{c} \) are unit vectors and \( |\vec{b}|=4 \) with \( \vec{a} \times \v....
2024-01-22Let the unit vectors \( a \) and \( b \) be perpendicular and the unit vector \( c \) be incline....
2024-01-22The vectors \( a, b \) and \( c \) are equal in length and taken pairwise, make equal angles. If....
2024-01-22The volume of the tetrahedron whose vertices are the points with position vectors \( i-6 j+10 k,....
2024-01-22The position vectors of the points \( \mathrm{A} \) and \( \mathrm{B} \) with respect to \( \mat....