Match the statements/expressions in Column-I with the values given in Column II:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
Root(s) of the expression \\
\( 2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2 \)
\end{tabular} & \( (\mathrm{P}) \) & \( \frac{\pi}{6} \) \\
\hline (B) & \begin{tabular}{l}
Points of discontinuity of \\
the function \\
\( f(x)=\left[\frac{6 x}{\pi}\right] \cos \left[\frac{3 x}{\pi}\right] \) \\
where \( [y] \) denotes the \\
largest integer less than or \\
equal to \( y \)
\end{tabular} & (Q) & \( \frac{\pi}{4} \) \\
\hline (C) & \begin{tabular}{l}
Volume of the \\
parallelepiped with its \\
edges represented by the \\
vectors \( \hat{i}+\hat{j}+\hat{i} 2 \hat{j} \) and \\
\( \hat{i}+\hat{j}+\pi \hat{k} \)
\end{tabular} & (R) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline (D) & \begin{tabular}{l}
Angle between vectors \( \vec{a} \) \\
and \( \hat{b} \) where \( \vec{a}, \hat{b} \) and \( \vec{c} \) \\
are unit vectors satisfying \\
\( \vec{a}+\vec{b}+\sqrt{3} \vec{c}=\overrightarrow{0} \)
\end{tabular} & (S) & \( \frac{\pi}{2} \) \\
\hline & & (T) & \( \pi \) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & R, S & P, R, S, T & T & P \\
(2) & Q, S & P, R, S, T & Q & P \\
(3) & Q, S & P, R, S, T & T & R \\
(4) & P, S & Q, R, S, T & T & R
\end{tabular}