If \( \int_{0}^{x} e^{z x} \cdot e^{-z^{2}} d z=f(x) \int_{0}^{x} e^{-z^{2} / 4} d z \) then \( ....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=CM9P7C2vtQs
If \( \int_{0}^{x} e^{z x} \cdot e^{-z^{2}} d z=f(x) \int_{0}^{x} e^{-z^{2} / 4} d z \)
\( \mathrm{P} \)
then \( \int e^{x}\left(\log _{e}(f(x))+\frac{x}{2}\right) d x= \)
(1) \( \frac{x e^{x}}{2}+c \)
(2) \( \frac{x^{2} e^{x}}{4}+c \)
(3) \( \frac{x^{2} e^{x}}{2}+c \)
(4) \( \frac{x e^{x}}{4}+c \)
.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live