Matrix \( \mathbf{A} \) is such that \( \mathbf{A}^{2}=2 \mathbf{A}...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=PVbLZjZhSxQ
Matrix \( \mathbf{A} \) is such that \( \mathbf{A}^{2}=2 \mathbf{A}-\mathrm{I} \), where \( \mathrm{I} \) is the identity matrix. Then for \( n \geq 2, \mathbf{A}^{n}= \)
(A) \( n A-(n-1) I \)
(B) \( n \mathrm{~A}-\mathrm{I} \)
(C) \( 2^{n-1} \mathbf{A}-(n-1) I \)
(D) \( 2^{n-1} A-I \)
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw