Nolan Coble: IQC-QuICS Math-CS Seminar

Channel:
Subscribers:
2,520
Published on ● Video Link: https://www.youtube.com/watch?v=4yfQh4PFyFs



Duration: 44:32
113 views
0


Title: Divide-and-conquer method for approximating output probabilities of constant-depth, geometrically-local quantum circuits

Many schemes for obtaining a computational advantage with near-term quantum hardware are motivated by mathematical results proving the computational hardness of sampling from near-term quantum circuits. Near-term quantum circuits are often modeled as geometrically-local, shallow-depth (GLSD) quantum circuits. That is, circuits consisting of two qubit gates that can act only on neighboring qubits, and that have polylogarithmic depth in the number of qubits. In this talk, we consider the task of estimating output probabilities of GLSD circuits to inverse polynomial error. In particular, we will demonstrate how the output state of a GLSD circuit can be approximated via a linear combination of product states, each of which are produced via new GLSD circuits on approximately half the original number of qubits. We will show how this idea can be used to develop a classical divide-and-conquer algorithm for calculating the output probabilities of a 3D geometrically-local circuit. This talk is based on joint work with Matthew Coudron.

Reference: N. Coble, M. Coudron. “Quasi-polynomial time approximation of output probabilities of geometrically-local, shallow quantum circuits.” arXiv:2012.05460




Other Videos By QuICS


2022-08-02Victor Albert: Quantum Error Correction & Bosonic Coding - Bosonic stabilizer codes
2022-07-29Laurens Lootens: QuICS Special Seminar
2022-05-05Nikolas Breuckmann: LDPC Quantum Codes: Recent developments, Challenges and Opportunities
2022-05-04Jonas Helsen: Shadow sequence estimation: a primitive for learning gate set noise
2022-04-01Chen Bai: Post-quantum security of the Even-Mansour cipher
2022-03-18Aleksander Kubicki: Geometry of Banach spaces: a new route towards Position Based Cryptography
2022-03-05Jonathan Home: Autonomous quantum error correction of a grid state qubit
2022-03-03Alexander Dalzell: Random quantum circuits transform local noise into global white noise
2022-02-25Samson Wang: QuICS Special Seminar
2021-12-02Tobias Osborne: Simulating conformal field theories
2021-12-02Nolan Coble: IQC-QuICS Math-CS Seminar
2021-11-29Mina Doosti: Quantum Physical Unclonable Functions and Their Comprehensive Cryptanalysis
2021-10-06Victor Albert: Overview of quantum research at UMD
2021-09-30Nicolas Delfosse: Improved quantum error correction using soft information
2021-05-05Tamara Kohler and Emilio Onorati: Fitting quantum noise models to tomography data
2021-04-14Sisi Zhou: Error-corrected quantum metrology
2021-03-28Martin Fraas: Quantized quantum transport in interacting systems
2021-03-12Michael DeMarco: A Commuting Projector Model for Hall Conductance
2021-03-09Daniel Stilck França: Limitations of optimization algorithms on noisy quantum devices
2021-03-09Robert Huang: Fundamental aspects of solving quantum problems with machine learning
2020-11-04Wolfgang Pfaff: Increasing connectivity and modularity in superconducting quantum circuits



Tags:
quantum computing