Wolfgang Pfaff: Increasing connectivity and modularity in superconducting quantum circuits

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=6Mv85Ufg76g



Duration: 57:03
404 views
0


Full title: Increasing connectivity and modularity in superconducting quantum circuits with parametric interactions

Finding ways to connect quantum systems in a controlled and flexible fashion lies at the core of constructing quantum information processing systems. Superconducting quantum circuits present a particularly promising platform for engineering quantum systems from the ground up: the strong light-matter interactions in these circuits can readily be used to realize interactions between different components. There remain interesting questions, however, about what types of interactions we can realize. This includes finding means for increasing the degree of connectivity between individual qubits (or qudits), and determine how to dynamically engineer interactions in modular systems. In this talk I will review ongoing efforts to achieve modular scaling using microwave photons as information carriers. I will focus on the use of nonlinear mixing in Josephson junctions to realize microwave photonic interconnects that allow connecting individual qubits and cavities on-demand. Recent experiments in this area have enabled prototypical quantum networks. I will discuss ongoing work that shows the potential for achieving multi-node networks with high degrees of connectivity, and how the tools used in these approaches could be utilized to investigate quantum information protocols in open systems.




Other Videos By QuICS


2021-12-02Nolan Coble: IQC-QuICS Math-CS Seminar
2021-11-29Mina Doosti: Quantum Physical Unclonable Functions and Their Comprehensive Cryptanalysis
2021-10-06Victor Albert: Overview of quantum research at UMD
2021-09-30Nicolas Delfosse: Improved quantum error correction using soft information
2021-05-05Tamara Kohler and Emilio Onorati: Fitting quantum noise models to tomography data
2021-04-14Sisi Zhou: Error-corrected quantum metrology
2021-03-28Martin Fraas: Quantized quantum transport in interacting systems
2021-03-12Michael DeMarco: A Commuting Projector Model for Hall Conductance
2021-03-09Daniel Stilck França: Limitations of optimization algorithms on noisy quantum devices
2021-03-09Robert Huang: Fundamental aspects of solving quantum problems with machine learning
2020-11-04Wolfgang Pfaff: Increasing connectivity and modularity in superconducting quantum circuits
2020-10-29Iordanis Kerenidis: Quantum Machine Learning: prospects and challenges
2020-10-21Urmila Mahadev: Classical homomorphic encryption for quantum circuits
2020-10-08Thomas Baker: Density functionals, Kohn-Sham potentials & Green’s functions from a quantum computer
2020-09-23James D. Whitfield: Limitations of Hartree-Fock with Quantum Resources
2020-09-18Mark Wilde: Quantum Renyi relative entropies and their use
2020-08-17Dmitry Green: A superconducting circuit realization of combinatorial gauge symmetry
2020-07-23Matt Hastings: The Power of Adiabatic Quantum Computation with No Sign Problem
2020-06-19William Slofstra: Arkhipov's theorem, games, groups, and graphs
2020-06-10Ramis Movassagh:Cayley path & quantum supremacy:Average case # P-Hardness of random circuit sampling
2020-06-04Steve Flammia: Characterization of Solvable Spin Models via Graph Invariants



Tags:
quantum computing