Paragraph for Question
Let \( \angle A=23^{\circ}, \angle B=75^{\circ} \) and \( \angle C=82^{\circ} \) be the angles of \( \triangle A B C \).
The incircle of \( \triangle A B C \) touches the sides \( B C, C A, A B \) at points \( D, E, F \) respectively. Let \( r^{\prime}, r_{1}^{\prime} \) respectively be the inradius, exradius opposite to vertex \( D \) of \( \triangle D E F \) and \( r \) be the inradius of \( \triangle A B C \), then \( \frac{r_{1}^{\prime}}{r}= \)
(a) \( \sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}-1 \)
(b) \( 1-\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \)
(c) \( \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}-1 \)
(d) \( 1-\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live