Passage A radio nuclide with decay constant \( \lambda \) is produced in a nuclear reactor at a ....
Passage
A radio nuclide with decay constant \( \lambda \) is produced in a
\( \mathrm{P} \)
nuclear reactor at a rate \( \mathrm{q}_{0} t \) per second, where \( \mathrm{q}_{0} \) is constant and \( t \) is time. During each decay energy \( E_{0} \) is released. If at \( t=0 \), production of radio nuclide started, find Instantaneous power developed at any time \( \mathrm{t} \) :
(1) \( \left(q_{0} t-\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda} e^{-\lambda t}\right) E_{0} \)
(2) \( \left(q_{0} t+\frac{q_{0}}{\lambda}-\frac{q_{0}}{\lambda} e^{-\lambda t}\right) E_{0} \)
(3) \( \left(q_{0} t+\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda} e^{-\lambda t}\right) E_{0} \)
(4) \( \left(q_{0} t-\frac{q_{0}}{\lambda}-\frac{q_{0}}{\lambda} e^{-\lambda t}\right) E_{0} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live