Prove that \( \Delta=\left|\begin{array}{ccc}\beta \gamma & \beta \gamma^{\prime}+\beta^{\prime}...
Prove that \( \Delta=\left|\begin{array}{ccc}\beta \gamma & \beta \gamma^{\prime}+\beta^{\prime} \gamma & \beta^{\prime} \gamma^{\prime} \\ \gamma \alpha & \gamma \alpha^{\prime}+\gamma^{\prime} \alpha & \gamma^{\prime} \alpha^{\prime} \\ \alpha \beta & \alpha \beta^{\prime}+\alpha^{\prime} \beta & \alpha^{\prime} \beta^{\prime}\end{array}\right|=\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right)\left(\gamma \alpha^{\prime}-\gamma^{\prime} \alpha\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2022-11-07 | Given the matrix \( \mathbf{A}=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\e... |
2022-11-07 | If the foci of the ellipse \( \frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1 \& \) the hyperbola \( \fra... |
2022-11-07 | If \( D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots \ldots . ., d_{n}\right\} \), then prove ... |
2022-11-07 | Prove that the distance of the point \( (\sqrt{6} \cos \theta, \sqrt{2} \sin \theta) \) on the e... |
2022-11-07 | Find the eccentricity of the ellipse which meets the straight line \( 2 x-3 y=6 \) on the \( x \... |
2022-11-07 | Find the equation of the ellipse whose foci are \( (2,3),(-2,3) \) and whose semi-minor axis is ... |
2022-11-07 | Given the base of a triangle and the ratio of the tangent of half the base angles. Show that the... |
2022-11-07 | If a circle be drawn so as always to touch a given straight line and also a given circle externa... |
2022-11-07 | Let \( \mathbf{A}, \mathbf{B}, \mathbf{C} \) be three \( 3 \times 3 \) matrices with real entrie... |
2022-11-07 | If \( y=\frac{u}{v} \), where \( u \& v \) are functions of ' \( x \) ', show that, \( v^{3} \fr... |
2022-11-07 | Prove that \( \Delta=\left|\begin{array}{ccc}\beta \gamma & \beta \gamma^{\prime}+\beta^{\prime}... |
2022-11-07 | If the determinant \( \left|\begin{array}{ccc}a+p & \ell+x & u+f \\ b+q & m+y & v+g \\ c+r & n+z... |
2022-11-07 | If \( \int \frac{2^{x}}{\sqrt{1-4^{x}}} d x=K \sin ^{-1}\left(2^{x}\right)+C \), then the value ... |
2022-11-07 | Prove that if \( A \) and \( B \) are \( n \times n \) matrices, then \( \operatorname{det}\left... |
2022-11-07 | If \( A \) and \( B \) are two square matrices such that \( B=-A^{-1} B A \), then show that \( ... |
2022-11-07 | If \( \int(\sin 2 x-\cos 2 x) d x=\frac{1}{\sqrt{2}} \sin (2 x-a)+C \), then
(A) \( a=\frac{5 \p... |
2022-11-07 | If \( \int x^{13 / 2} \cdot\left(1+x^{5 / 2}\right)^{1 / 2} d x=P\left(1+x^{5 / 2}\right)^{7 / 2... |
2022-11-07 | The value of \( \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x \) is equal to
(... |
2022-11-07 | The value of \( \int(x-1) e^{-x} d x \) is equal to
\( (A)-x e^{x}+C \)
(B) \( x e^{x}+C \)
(C) ... |
2022-11-07 | The value of \( \int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x \) is equal to
(A) \( \ell n|x|+\... |
2022-11-07 | If \( y=\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}} \) and \( y=0 \) when \( x=0 \), then valu... |