The value of \( \int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x \) is equal to (A) \( \ell n|x|+\...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=GnD-kTYOtb0
The value of \( \int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x \) is equal to
(A) \( \ell n|x|+\frac{2}{7} \ln \left|1+x^{7}\right|+C \)
(B) \( \ell n|x|-\frac{2}{7} \ln \left|1-x^{7}\right|+C \)
(C) \( \ln |x|-\frac{2}{7} \ln \left|1+x^{7}\right|+C \)
(D) \( \ell \mathrm{n}|\mathrm{x}|+\frac{2}{7} \ell \mathrm{n}\left|1-\mathrm{x}^{7}\right|+\mathrm{C} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw