[RecSys 2018 Challenge winner] Two-stage Model for Automatic Playlist Continuation at Scale |TDLS

Published on ● Video Link: https://www.youtube.com/watch?v=fVsrhWqlQAg



Duration: 1:47:16
1,237 views
23


Toronto Deep Learning Series
https://tdls.a-i.science/events/2019-03-11/

Two-stage Model for Automatic Playlist Continuation at Scale

Abstract: Automatic playlist continuation is a prominent problem in music recommendation. Significant portion of music consumption is now done online through playlists and playlist-like online radio stations. Manually compiling playlists for consumers is a highly time consuming task that is difficult to do at scale given the diversity of tastes and the large amount of musical content available. Consequently, automated playlist continuation has received increasing attention recently. The 2018 ACM RecSys Challenge is dedicated to evaluating and advancing current state-of-the-art in automated playlist continuation using a large scale dataset released by Spotify. In this paper we present our approach to this challenge.
We use a two-stage model where the first stage is optimized for
fast retrieval, and the second stage re-ranks retrieved candidates
maximizing the accuracy at the top of the recommended list. Our
team vl6 achieved 1’st place in both main and creative tracks out
of over 100 teams.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-04-11Deep InfoMax: Learning deep representations by mutual information estimation and maximization | AISC
2019-04-08ACT: Adaptive Computation Time for Recurrent Neural Networks | AISC
2019-04-04[FFJORD] Free-form Continuous Dynamics for Scalable Reversible Generative Models (Part 1) | AISC
2019-04-01[DOM-Q-NET] Grounded RL on Structured Language | AISC Author Speaking
2019-03-315-min [machine learning] paper challenge | AISC
2019-03-28[Variational Autoencoder] Auto-Encoding Variational Bayes | AISC Foundational
2019-03-25[GQN] Neural Scene Representation and Rendering | AISC
2019-03-21Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples | AISC
2019-03-18Understanding the Origins of Bias in Word Embeddings
2019-03-14[Original Style Transfer] A Neural Algorithm of Artistic Style | TDLS Foundational
2019-03-11[RecSys 2018 Challenge winner] Two-stage Model for Automatic Playlist Continuation at Scale |TDLS
2019-03-07[OpenAI GPT2] Language Models are Unsupervised Multitask Learners | TDLS Trending Paper
2019-03-04You May Not Need Attention | TDLS Code Review
2019-02-28[DDQN] Deep Reinforcement Learning with Double Q-learning | TDLS Foundational
2019-02-25[AlphaGo Zero] Mastering the game of Go without human knowledge | TDLS
2019-02-21Transformer XL | AISC Trending Papers
2019-02-19Computational prediction of diagnosis & feature selection on mesothelioma patient records | AISC
2019-02-18Support Vector Machine (original paper) | AISC Foundational
2019-02-11Tensor Field Networks | AISC
2019-02-07ACAI: Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
2019-02-04Code Review: Transformer - Attention Is All You Need | AISC



Tags:
machine learning
recommender system
deep learning
recommendation engine
layer 6
recsys