[Variational Autoencoder] Auto-Encoding Variational Bayes | AISC Foundational

Published on ● Video Link: https://www.youtube.com/watch?v=Tc-XfiDPLf4



Duration: 1:19:50
29,390 views
458


A.I. Socratic Circles

For details including slides, visit https://aisc.a-i.science/events/2019-03-28

Lead: Elham Dolatabadi
Facilitators: Chris Dryden , Florian Goebels

Auto-Encoding Variational Bayes
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-04-23How goodness metrics lead to undesired recommendations
2019-04-22Deep Neural Networks for YouTube Recommendation | AISC Foundational
2019-04-18[Phoenics] A Bayesian Optimizer for Chemistry | AISC Author Speaking
2019-04-18Why do large batch sized trainings perform poorly in SGD? - Generalization Gap Explained | AISC
2019-04-16Structured Neural Summarization | AISC Lunch & Learn
2019-04-11Deep InfoMax: Learning deep representations by mutual information estimation and maximization | AISC
2019-04-08ACT: Adaptive Computation Time for Recurrent Neural Networks | AISC
2019-04-04[FFJORD] Free-form Continuous Dynamics for Scalable Reversible Generative Models (Part 1) | AISC
2019-04-01[DOM-Q-NET] Grounded RL on Structured Language | AISC Author Speaking
2019-03-315-min [machine learning] paper challenge | AISC
2019-03-28[Variational Autoencoder] Auto-Encoding Variational Bayes | AISC Foundational
2019-03-25[GQN] Neural Scene Representation and Rendering | AISC
2019-03-21Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples | AISC
2019-03-18Understanding the Origins of Bias in Word Embeddings
2019-03-14[Original Style Transfer] A Neural Algorithm of Artistic Style | TDLS Foundational
2019-03-11[RecSys 2018 Challenge winner] Two-stage Model for Automatic Playlist Continuation at Scale |TDLS
2019-03-07[OpenAI GPT2] Language Models are Unsupervised Multitask Learners | TDLS Trending Paper
2019-03-04You May Not Need Attention | TDLS Code Review
2019-02-28[DDQN] Deep Reinforcement Learning with Double Q-learning | TDLS Foundational
2019-02-25[AlphaGo Zero] Mastering the game of Go without human knowledge | TDLS
2019-02-21Transformer XL | AISC Trending Papers



Tags:
deep learning
autoencoders
embedding
variational autoencoder
vae
representation learning
machine learning