Research talk: Towards efficient generalization in continual RL using episodic memory

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=pvn-K_omAIo



Duration: 9:41
457 views
0


Speaker: Mandana Samiei, PhD Student, McGill University and Mila (Quebec AI Institute)

Reinforcement learning (RL) is a powerful, brain-inspired framework to train agents for making sequential decisions in artificial intelligence. In this talk, the researchers consider two scenarios wherein RL can be challenging. The first is when non-stationarity plays an important role in the environment, and the second is when data and compute available to the agent are limited. We then discuss mitigation principles inspired by the brain’s capacity for episodic memory, that is, the subjective memory of specific previous events. However, the classical implementation of episodic memory in RL is computationally inefficient for storing and retrieving information. Besides that, simple episodic memories do not show good generalization to novel tasks. Despite the recent progress made by episodic memory in RL on the speed of learning, efficient generalization remains an open area for future explorations. The researchers propose that a more realistic view of episodic memory is one that incorporates predictive schemata into an external inference algorithm, which could theoretically help with generalization in RL.

Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit




Other Videos By Microsoft Research


2022-02-08Plenary: Industrial Research in the 21st Century
2022-02-02Dead-end Discovery: How offline reinforcement learning could assist healthcare decision-makers
2022-01-27Microsoft Soundscape - overview of Routes feature
2022-01-24Research talk: Breaking the deadly triad with a target network
2022-01-24Research talk: Learning and pretraining strategies for dense retrieval in search and beyond
2022-01-24Opening remarks: Research for Industry
2022-01-24Opening remarks: Future of Cloud Networking
2022-01-24Research talk: Cloud networking for a post-Moore’s Law era
2022-01-24Industry talk: Key forces driving industry transformation and disruption
2022-01-24Research talk: Local factor models for large-scale inductive recommendation
2022-01-24Research talk: Towards efficient generalization in continual RL using episodic memory
2022-01-24Research talk: SPTAG++: Fast hundreds of billions-scale vector search with millisecond response time
2022-01-24Demo: Using network machine learning for organizational analytics
2022-01-24Opening remarks: New Future of Work
2022-01-24Research talk: Approximate nearest neighbor search systems at scale
2022-01-24Closing remarks: The Future of Search and Recommendation
2022-01-24Research talk: Semantic search science: How Microsoft Bing AI is powering Azure Cognitive Search
2022-01-24Research talk: Extracting pragmatics from content interactions to improve enterprise recommendations
2022-01-24Practical tips for productivity & wellbeing: Microproductivity strategy to do work in short bursts
2022-01-24Research talk: Summarizing information across multiple documents and modalities
2022-01-24Research talk: System frontiers for dense retrieval



Tags:
carbon negative
global warming
Earth warming
microsoft research summit reward-based learning
reinforcement learning
innovation in artificial environments
accelerate AI
microsoft research summit