Shiv Akshar Yadavalli: Lost, but not forgotten: Extracting quantum information in noisy systems

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=QZQRFUnIUtI



Duration: 0:00
80 views
0


In this talk, we will mainly focus on noisy quantum trees: at each node of a tree, a received qubit unitarily interacts with fresh ancilla qubits, after which each qubit is sent through a noisy channel to a different node in the next level. Therefore, as the tree depth grows, there is a competition between the irreversible effect of noise and the protection against such noise achieved by delocalization of information. Using novel decoders, we demonstrate that quantum information can be indefinitely preserved in infinite noisy quantum trees, without the need for mid-circuit error correction. Furthermore, we establish that for noise above certain thresholds (that depend on properties of the encoding unitary), quantum information decays exponentially with tree depth. Towards the end of the talk, we will briefly consider the optimal distillation of pure coherent states from coherent thermal states in bosonic systems, using time-translation invariant (e.g., phase-insensitive) operations. Remarkably, the lowest achievable error -- as quantified by infidelity (one minus the fidelity) of the output state with the desired coherent state -- is proportional to the inverse of the purity of coherence of the input state, a quantity obtained from the Right-Logarithmic-Derivative (RLD) Fisher information metric, hence revealing an operational interpretation of this quantity.




Other Videos By QuICS


2025-04-21Robert Ott: Error-corrected fermionic quantum processors with neutral atoms
2025-04-17Torsten Zache: Observation of string breaking on a (2+1)D Rydberg quantum simulator
2025-04-10Shiv Akshar Yadavalli: Lost, but not forgotten: Extracting quantum information in noisy systems
2025-04-07Andrew Lucas: Quantum codes as robust phases of matter
2025-03-28Steven Flammia: A Constructive Approach to Zauner’s Conjecture via the Stark Conjectures
2025-03-06Manideep Manindlapally: Conditional lower bounds for algorithms with pre-processed advice
2025-02-13Howard Barnum: Two principle-based formulations of quantum theory
2025-01-24Connor Hann: Hardware-efficient quantum error correction using concatenated bosonic qubits
2024-12-05Barak Nehoran
2024-10-28Yulong Dong: Noise Learning with Quantum Signal Processing for Analog Quantum Computation
2024-10-28William Kindel
2024-10-28Jiaqi Leng: Quantum Dynamics for Continuous Optimization
2024-10-28Christopher Monroe: Gate and Analog Quantum Processing with Trapped Ions (they’re the same thing)
2024-10-28Tom Manovitz: Quantum coarsening and collective dynamics on a programmable quantum simulator
2024-10-28Daniel Lidar: Scaling Advantage in Approximate Optimization with Quantum Annealing
2024-10-28Trond Andersen: Thermalization and Criticality on an Analog-Digital Quantum Simulator
2024-10-28David Hayes: Characterizing the Noise in Quantinuum’s Quantum Computers
2024-10-28Edward Farhi: An Update on the Quantum Approximate Optimization Algorithm
2024-10-28Edwin Barnes: Control-based variational quantum algorithms and dynamical noise suppression
2024-10-28Ravi Naik
2024-10-28Yuan Liu