The angle of elevation of the top of a vertical pole when observed from each vertex of a regular...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=KRmB5R8lfDE
The angle of elevation of the top of a vertical pole when observed from each vertex of a regular hexagon is \( \frac{\pi}{3} \). If the area of the circle circumscribing the hexagon be \( A \) metre, then the area of the hexagon is
(A) \( \frac{3 \sqrt{3} A}{8} m^{2} \)
(B) \( \frac{\sqrt{3} A}{\pi} m^{2} \)
(C) \( \frac{3 \sqrt{3} A}{4 \pi} m^{2} \)
(D) \( \frac{3 \sqrt{3} A}{2 \pi} m^{2} \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live