The maximum value of \( \cos \alpha_{1} \cdot \cos \alpha_{2} \cdot \cos \alpha_{3} \cdot \ldots...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=0w0beSNpL-U
The maximum value of \( \cos \alpha_{1} \cdot \cos \alpha_{2} \cdot \cos \alpha_{3} \cdot \ldots \cdot \cos \alpha_{n} \) under the restriction \( 0 \leq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \leq \frac{\pi}{2} \) and \( \cot \alpha_{1} \cdot \cot \alpha_{2} \cdot \ldots \cdot \cot \alpha_{n}=1 \) is
(a) \( \frac{1}{2^{\frac{n}{2}}} \)
(b) \( \frac{1}{2^{n}} \)
(c) \( \frac{-1}{2^{n}} \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live