If \( \cot ^{2} x=\cot (x-y) \cdot \cot (x-z) \), then \( \cot 2 x \) is equal to \( \left(x \ne...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=Td4aOQkjFBI
If \( \cot ^{2} x=\cot (x-y) \cdot \cot (x-z) \), then \( \cot 2 x \) is equal to \( \left(x \neq \pm \frac{\pi}{4}\right) \)
(a) \( \frac{1}{2}(\tan y+\tan z) \)
(b) \( \frac{1}{2}(\cot y+\cot z) \)
(c) \( \frac{1}{2}(\sin y+\sin z) \)
(d) None of these
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live