The solution of the differential equation \( x^{2} \frac{d y}{d x} \cos \frac{1}{x}-y \sin \frac...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=9nEcIN64P1k
The solution of the differential equation \( x^{2} \frac{d y}{d x} \cos \frac{1}{x}-y \sin \frac{1}{x}=-1 \), where \( y \rightarrow-1 \) as \( x \rightarrow \infty \) is
(a) \( y=\sin \frac{1}{x}-\cos \frac{1}{x} \)
(b) \( y=\frac{x+1}{x \sin \frac{1}{x}} \)
(c) \( y=\cos \frac{1}{x}+\sin \frac{1}{x} \)
(d) \( y=\frac{x+1}{x \cos 1 / x} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live