The value of \( \lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left(\left[1^{2} x+1^{2}\right]+\le...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=GC2sAU9CWsU
The value of \( \lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left(\left[1^{2} x+1^{2}\right]+\left[2^{2} x+2^{2}\right]+\ldots+\left[n^{2} x+n^{2}\right]\right) \) (where \( [\cdot] \) denotes the greatest integer function) is
(a) \( \frac{x}{3} \)
(b) \( x+\frac{1}{3} \)
(c) \( \frac{x}{3}+\frac{1}{3} \)
(d) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw