The vibrations of string of length \( 60 \mathrm{~cm} \) fixed both...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=iMeEfYxkc6g
The vibrations of string of length \( 60 \mathrm{~cm} \) fixed both ends are represented by the equations
\( \mathrm{P} \) \( y=4 \sin (\pi x / 15) \cos (96 \pi t) \) where \( x \) and \( y \) are in cm
W. and \( t \) in \( \mathrm{s} \). The maximum displacement at \( x=5 \mathrm{~cm} \) is
(1) \( 2 \sqrt{3} \mathrm{~cm} \)
(2) \( 4 \mathrm{~cm} \)
(3) zero
(4) \( 4 \sqrt{2} \mathrm{~cm} \)
\[
\theta
\]
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw