TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=gfU5y7qCxF0



Duration: 0:00
18,477 views
507


A deep dive into the TokenFormer and an opinion about its impact, novelty, and relation to prior work.

Paper: https://arxiv.org/abs/2410.23168

Abstract:
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at \url{this https URL}.

Authors: Haiyang Wang, Yue Fan, Muhammad Ferjad Naeem, Yongqin Xian, Jan Eric Lenssen, Liwei Wang, Federico Tombari, Bernt Schiele

Links:
Homepage: https://ykilcher.com/
Merch:
YouTube:
Twitter: https://twitter.com/ykilcher
Discord: https://ykilcher.com/discord
LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2025-04-05On the Biology of a Large Language Model (Part 1)
2025-01-26[GRPO Explained] DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
2024-12-26Traditional Holiday Live Stream
2024-12-24Byte Latent Transformer: Patches Scale Better Than Tokens (Paper Explained)
2024-12-10Safety Alignment Should be Made More Than Just a Few Tokens Deep (Paper Explained)
2024-11-23TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters (Paper Explained)
2024-10-19GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
2024-10-12Were RNNs All We Needed? (Paper Explained)
2024-10-05Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters (Paper)
2024-08-04Privacy Backdoors: Stealing Data with Corrupted Pretrained Models (Paper Explained)
2024-07-08Scalable MatMul-free Language Modeling (Paper Explained)
2024-06-26Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools (Paper Explained)
2024-06-01xLSTM: Extended Long Short-Term Memory
2024-05-21[ML News] OpenAI is in hot waters (GPT-4o, Ilya Leaving, Scarlett Johansson legal action)
2024-05-01ORPO: Monolithic Preference Optimization without Reference Model (Paper Explained)
2024-04-30[ML News] Chips, Robots, and Models
2024-04-28TransformerFAM: Feedback attention is working memory
2024-04-27[ML News] Devin exposed | NeurIPS track for high school students
2024-04-24Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
2024-04-23[ML News] Llama 3 changes the game
2024-04-17Hugging Face got hacked