Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=r_UBBfTPcF0



Duration: 37:16
56,104 views
1,725


Google researchers achieve supposedly infinite context attention via compressive memory.

Paper: https://arxiv.org/abs/2404.07143

Abstract:
This work introduces an efficient method to scale Transformer-based Large Language Models (LLMs) to infinitely long inputs with bounded memory and computation. A key component in our proposed approach is a new attention technique dubbed Infini-attention. The Infini-attention incorporates a compressive memory into the vanilla attention mechanism and builds in both masked local attention and long-term linear attention mechanisms in a single Transformer block. We demonstrate the effectiveness of our approach on long-context language modeling benchmarks, 1M sequence length passkey context block retrieval and 500K length book summarization tasks with 1B and 8B LLMs. Our approach introduces minimal bounded memory parameters and enables fast streaming inference for LLMs.

Authors: Tsendsuren Munkhdalai, Manaal Faruqui, Siddharth Gopal

Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://ykilcher.com/discord
LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2024-10-05Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters (Paper)
2024-08-04Privacy Backdoors: Stealing Data with Corrupted Pretrained Models (Paper Explained)
2024-07-08Scalable MatMul-free Language Modeling (Paper Explained)
2024-06-26Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools (Paper Explained)
2024-06-01xLSTM: Extended Long Short-Term Memory
2024-05-21[ML News] OpenAI is in hot waters (GPT-4o, Ilya Leaving, Scarlett Johansson legal action)
2024-05-01ORPO: Monolithic Preference Optimization without Reference Model (Paper Explained)
2024-04-30[ML News] Chips, Robots, and Models
2024-04-28TransformerFAM: Feedback attention is working memory
2024-04-27[ML News] Devin exposed | NeurIPS track for high school students
2024-04-24Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
2024-04-23[ML News] Llama 3 changes the game
2024-04-17Hugging Face got hacked
2024-04-15[ML News] Microsoft to spend 100 BILLION DOLLARS on supercomputer (& more industry news)
2024-04-13[ML News] Jamba, CMD-R+, and other new models (yes, I know this is like a week behind 🙃)
2024-04-08Flow Matching for Generative Modeling (Paper Explained)
2024-04-06Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping (Searchformer)
2024-03-26[ML News] Grok-1 open-sourced | Nvidia GTC | OpenAI leaks model names | AI Act
2024-03-17[ML News] Devin AI Software Engineer | GPT-4.5-Turbo LEAKED | US Gov't Report: Total Extinction
2024-03-10[ML News] Elon sues OpenAI | Mistral Large | More Gemini Drama
2024-03-07On Claude 3



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper