Using trigonometric relation \( \sin A \sin B \) \( =1 / 2[\cos (A-...
Using trigonometric relation \( \sin A \sin B \)
\( =1 / 2[\cos (A-B)]-\cos (A+B) \), we can write
\( c_{m}(t)=A_{c} \sin \omega_{c} t+\mu A_{c} \sin \omega_{m} t \sin \omega_{c} t \) as follows
(a) \( c_{m}(t)=A_{c} \sin \omega_{m} t+\frac{\mu A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t \)
\[
-\frac{\mu A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
\]
(b) \( c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu A_{m}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t \)
\[
-\frac{\mu A_{m}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
\]
- (c) \( c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t \)
\[
-\frac{\mu A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
\]
- (d) \( c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t \)
\[
-\frac{\mu A_{c}}{2}\left(\omega_{c}-\omega_{m}\right) t
\]
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Other Statistics
Counter-Strike: Source Statistics For PW Solutions
There are 30,471 views in 1,724 videos for Counter-Strike: Source. His channel uploaded over 5 days worth of Counter-Strike: Source videos, less than 0.53% of the total video content that PW Solutions has uploaded to YouTube.