Why video games and board games aren’t a good measure of AI intelligence
Reported today on The Verge
For the full article visit: https://www.theverge.com/2019/12/19/21029605/artificial-intelligence-ai-progress-measurement-benchmarks-interview-francois-chollet-google
Reported today in The Verge.
Why video games and board games aren't a good measure of AI intelligence
Measuring the intelligence of AI is one of the trickiest but most important questions in the field of computer science. If you can't understand whether the machine you've built is cleverer today than it was yesterday, how do you know you're making progress?
At first glance, this might seem like a non-issue. "Obviously AI is getting smarter" is one reply. "Just look at all the money and talent pouring into the field. Look at the milestones, like beating humans at Go, and the applications that were impossible to solve a decade ago that are commonplace today, like image recognition. How is that not progress?"
Another reply is that these achievements aren't really a good gauge of intelligence. Beating humans at chess and Go is impressive, yes, but what does it matter if the smartest computer can be out-strategized in general problem-solving by a toddler or a rat?
This is a criticism put forward by AI researcher François Chollet, a software engineer at Google and a well-known figure in the machine learning community. Chollet is the creator of Keras, a widely used program for developing neural networks, the backbone of contemporary AI. He's also written numerous textbooks on machine learning and maintains a popular Twitter feed where he shares his opinions on the field.
In a recent paper titled "On the Measure of Intelligence," Chollet also laid out an argument that the AI world needs to refocus on what intelligence is and isn't. If researchers want to make progress toward general artificial intelligence, says Chollet, they need to look past popular benchmarks like video games and board games, and start thinking about the skills that actually make humans clever, like our