\( 49^{n}+16 n-1 \) is divisible by \( \mathrm{P} \) W (A) 3 (B) 64...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=RmIq_EwfqyY



Duration: 0:00
3 views
0


\( 49^{n}+16 n-1 \) is divisible by
\( \mathrm{P} \)
W
(A) 3
(B) 64
(C) 19
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/




Other Videos By PW Solutions


2023-02-25Statement-1: The digit in the unit place of \( 183 !+3^{183} \) is ...
2023-02-25The statement \( P(n)=1 \times 1 !+2 \times 2 !+\ldots+n \times n !...
2023-02-25For \( \mathrm{n} \in \mathrm{N}, \mathrm{a}^{2 \mathrm{n}-1}+\math...
2023-02-25Statement-1: The digit in the unit place of \( 183 !+3^{183} \) is ...
2023-02-25Statement-1 : The greatest positive integer which divides \( (\math...
2023-02-25Statement-1: \( \mathrm{P}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}+1 ...
2023-02-25\( \operatorname{Cos} A . \operatorname{Cos} 2 A . \operatorname{Co...
2023-02-25If \( 10^{\mathrm{n}}+3.4^{\mathrm{n}+2}+\mathrm{K} \) is divisible...
2023-02-25\( 2^{3 n}-7 n-1 \) is divisible by \( \mathrm{P} \) a) 64 b) 36 c) 49
2023-02-25The statement \( P(n)=1 \times 1 !+2 \times 2 !+\ldots+n \times n !...
2023-02-25\( 49^{n}+16 n-1 \) is divisible by \( \mathrm{P} \) W (A) 3 (B) 64...
2023-02-25If \( x^{n}-1 \) is divisible by \( x-k \), then the least positive...
2023-02-25In a triangle \( P Q R \), let \( \angle P Q R=30^{\circ} \) and th...
2023-02-25Consider a triangle \( \mathrm{ABC} \) and let \( \mathrm{a}, \math...
2023-02-25\( 49^{n}+16 n-1 \) is divisible by \( \mathrm{P} \) W (A) 3 (B) 64...
2023-02-25In a triangle the sum of two sides is \( x \) and the product of th...
2023-02-25The greatest positive integer which divides \( (n+1)(n+2)(n+3) \ldo...
2023-02-25Let \( \mathrm{ABC} \) and \( \mathrm{ABC}^{\prime} \) be two non-c...
2023-02-25Internal bisector of \( \angle A \) of a triangle \( A B C \) meets...
2023-02-25In a triangle \( \mathrm{ABC} \), let \( \tan \mathrm{A}=1, \tan \m...
2023-02-25Given an isosceles triangle, whose one angle is \( 120^{\circ} \) a...