Internal bisector of \( \angle A \) of a triangle \( A B C \) meets side \( B C \) at \( D \). A line drawn through \( D \) perpendicular to
\( \mathrm{P} \) \( \mathrm{AD} \) intersects the side \( \mathrm{AC} \) at \( \mathrm{E} \) and the side \( \mathrm{AB} \) at \( \mathrm{F} \). If \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) represent sides of \( \triangle A B C \) then
\( \mathrm{W} \)
(A) AE is \( \mathrm{HM} \) of b and c
(B) \( \mathrm{AD}=\frac{2 \mathrm{bc}}{\mathrm{b}+\mathrm{c}} \cos \frac{\mathrm{A}}{2} \)
(C) \( \mathrm{EF}=\frac{4 \mathrm{bc}}{\mathrm{b}+\mathrm{c}} \sin \frac{\mathrm{A}}{2} \)
(D) the triangle AEF is isosceles
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/