A block of mass \( \mathrm{m} \) is placed on wedge also of mass \( \mathrm{m} \). The wedge is ....
A block of mass \( \mathrm{m} \) is placed on wedge also of mass \( \mathrm{m} \). The wedge is placed on smooth horizontal fixed surface. One end of a light spring is connected to block and the other end to a light support \( \mathrm{S} \) rigidly fixed to wedge as shown. Friction is absent everywhere. The system is initially released from rest with spring unstressed. Match statements in column I with corresponding statements in column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
At the instant \\
compression in \\
spring is \\
maximum
\end{tabular} & (p) & \begin{tabular}{l}
speed of block is \\
zero
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
At the instant \\
spring has natural \\
length, that is, it is \\
unstressed
\end{tabular} & (q) & \begin{tabular}{l}
speed of block is \\
non-zero
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
At the instant net \\
force on wedge is \\
zero
\end{tabular} & (r) & \begin{tabular}{l}
speed of block is \\
maximum
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
At the instant \\
elastic potential \\
energy stored in \\
spring is least
\end{tabular} & (s) & \begin{tabular}{l}
speed of block is \\
minimum
\end{tabular} \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{q}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q}, \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p} \)
(2) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{r}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{p}, \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{s} \)
(3) \( \mathrm{A} \rightarrow \mathrm{p}, \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q}, \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p}, \mathrm{s} \)
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live