A Framework for Developing Deep Learning Classification Models

Published on ● Video Link: https://www.youtube.com/watch?v=Bk2Ale93htM



Duration: 5:14
443 views
44


5-min ML Paper Challenge
Presenters:
https://www.linkedin.com/in/lisamariepritchett/
https://www.linkedin.com/in/geoffrey-hunter-29325a7a/

Clustering with Deep Learning: Taxonomy and New Methods
https://arxiv.org/abs/1801.07648

Clustering methods based on deep neural networks have proven promising for clustering real-world data because of their high representational power. In this paper, we propose a systematic taxonomy of clustering methods that utilize deep neural networks. We base our taxonomy on a comprehensive review of recent work and validate the taxonomy in a case study. In this case study, we show that the taxonomy enables researchers and practitioners to systematically create new clustering methods by selectively recombining and replacing distinct aspects of previous methods with the goal of overcoming their individual limitations. The experimental evaluation confirms this and shows that the method created for the case study achieves state-of-the-art clustering quality and surpasses it in some cases.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-05-23Near-optimal Evasion of Randomized Convex-inducing Classifiers in Adversarial Environments | AISC
2019-05-21Comparative Document Summarisation via Classification | AISC
2019-05-13Sparse Transformers and MuseNet | AISC
2019-05-09Content Tree Word Embedding for document representation | AISC
2019-05-06Deep Temporal Logistic Bag-of-Features For Forecasting High Frequency Limit Order Book Time Series
2019-05-02A Web-scale system for scientific knowledge exploration | AISC
2019-05-02Convolutional Neural Networks for processing EEG signals
2019-05-02Classification of sentiment reviews using n-gram machine learning approach
2019-05-02Introduction to the Conditional GAN - A General Framework for Pixel2Pixel Translation
2019-05-02A Style-Based Generator Architecture for Generative Adversarial Networks
2019-05-02A Framework for Developing Deep Learning Classification Models
2019-05-02Revolutionizing Diet and Health with CNN's and the Microbiome
2019-05-02Efficient implementation of a neural network on hardware using compression techniques
2019-05-02Supercharging AI with high performance distributed computing
2019-05-02Combining Satellite Imagery and machine learning to predict poverty
2019-05-02Revolutionary Deep Learning Method to Denoise EEG Brainwaves
2019-04-25[LISA] Linguistically-Informed Self-Attention for Semantic Role Labeling | AISC
2019-04-23How goodness metrics lead to undesired recommendations
2019-04-22Deep Neural Networks for YouTube Recommendation | AISC Foundational
2019-04-18[Phoenics] A Bayesian Optimizer for Chemistry | AISC Author Speaking
2019-04-18Why do large batch sized trainings perform poorly in SGD? - Generalization Gap Explained | AISC



Tags:
deep learning
machine learning
classification
taxonomy
framework