Revolutionary Deep Learning Method to Denoise EEG Brainwaves

Published on ● Video Link: https://www.youtube.com/watch?v=eb89JQm53JY



Duration: 5:14
2,606 views
84


5-min ML Paper Challenge
Presenter: https://www.linkedin.com/in/albert-lai-b90655171/

Denoising Time Series Data Using Asymmetric Generative Adversarial Networks
https://link.springer.com/chapter/10.1007/978-3-319-93040-4_23

Denoising data is a preprocessing step for several time series mining algorithms. This step is especially important if the noise in data originates from diverse sources. Consequently, it is commonly used in biomedical applications that use Electroencephalography (EEG) data. In EEG data noise can occur due to ocular, muscular and cardiac activities. In this paper, we explicitly learn to remove noise from time series data without assuming a prior distribution of noise. We propose an online, fully automated, end-to-end system for denoising time series data. Our model for denoising time series is trained using unpaired training corpora and does not need information about the source of the noise or how it is manifested in the time series. We propose a new architecture called AsymmetricGAN that uses a generative adversarial network for denoising time series data. To analyze our approach, we create a synthetic dataset that is easy to visualize and interpret. We also evaluate and show the effectiveness of our approach on an existing EEG dataset.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2019-05-02A Web-scale system for scientific knowledge exploration | AISC
2019-05-02Convolutional Neural Networks for processing EEG signals
2019-05-02Classification of sentiment reviews using n-gram machine learning approach
2019-05-02Introduction to the Conditional GAN - A General Framework for Pixel2Pixel Translation
2019-05-02A Style-Based Generator Architecture for Generative Adversarial Networks
2019-05-02A Framework for Developing Deep Learning Classification Models
2019-05-02Revolutionizing Diet and Health with CNN's and the Microbiome
2019-05-02Efficient implementation of a neural network on hardware using compression techniques
2019-05-02Supercharging AI with high performance distributed computing
2019-05-02Combining Satellite Imagery and machine learning to predict poverty
2019-05-02Revolutionary Deep Learning Method to Denoise EEG Brainwaves
2019-04-25[LISA] Linguistically-Informed Self-Attention for Semantic Role Labeling | AISC
2019-04-23How goodness metrics lead to undesired recommendations
2019-04-22Deep Neural Networks for YouTube Recommendation | AISC Foundational
2019-04-18[Phoenics] A Bayesian Optimizer for Chemistry | AISC Author Speaking
2019-04-18Why do large batch sized trainings perform poorly in SGD? - Generalization Gap Explained | AISC
2019-04-16Structured Neural Summarization | AISC Lunch & Learn
2019-04-11Deep InfoMax: Learning deep representations by mutual information estimation and maximization | AISC
2019-04-08ACT: Adaptive Computation Time for Recurrent Neural Networks | AISC
2019-04-04[FFJORD] Free-form Continuous Dynamics for Scalable Reversible Generative Models (Part 1) | AISC
2019-04-01[DOM-Q-NET] Grounded RL on Structured Language | AISC Author Speaking



Tags:
deep learning
machine learning
brain computer interfaces
artificial intelligence
EEG
generative adversial network